ALLEY COPPICE: AN ALTERNATIVE LAND USE SYSTEM

Rory Lunny, Jim McAdam & Gerry Douglas.

- ¹ School of Biological Sciences, Queens University Belfast,
 - Belfast, N. Ireland, BT9 7BL
 - ² Agri-Food Bioscience Institute (AFBI), Belfast, BT9 5PX
- ³ Teagasc, Kinsealy Research Centre, Malahide Road, Dublin 17

Contact; rlunny01@qub.ac.uk

FARM WOODLAND FORUM MAY 2015. ORGANIC RESEARCH CENTRE

Contents

The AGROCOP project

Combining Agroforestry with Short Rotation Coppice

-Work on this project in Ireland (N&S)

AgroCop

Maximizing Timber and Energy Wood Production by Innovative **Agroforestry** Systems with Short Rotation **Coppice** as Intercrop

M Nahm, J André, G Douglas, C Dupraz, G Facciotto, A Graves, R Lunny, J McAdam, C Morhart, P Paris, A Pisanelli, H Spiecker, L Tosi, UH Sauter

WoodWisdom-Net Project

Who?

Project Associates:

- 1. Forest Research Institute Baden-Württemberg (FVA), Freiburg
- 2. Chair of Forest Growth (IWW), University of Freiburg
- 3. Institut National de la Recherche Agronomique (INRA), Montpellier
- CNR-Istituto di Biologia Agroambientale e Forestale (IBAF), Porano
- Teagasc Agriculture and Food Development Authority, Dublin & Agri-Food and Biosciences Institute (AFBI), Belfast
- Centre for Environmental Risks and Futures, Cranfield University (UK)
- Research Unit for Intensive Wood Production, Casale Monferrato (IT)
- + Farmers!

Background

Europe: Demand for woody biomass will exceed the availability of the raw material in future

Chosen Approach

Combination of

Agroforestry-Systems (AFS) for timber production
Short-Rotation-Coppice (SRC) for energy wood production

on agricultural fields

→ "Alley Coppice"

Morhart C, Douglas G, Dupraz C, Graves A, Nahm M, Paris P, Sauter UH, Sheppard J, Spiecker H. (2014). Alley Coppice – a new system with ancient roots. Annals of Forest Science, 71, 527-542.

www.woodwisdom.net www.eranetbioenergy.net

Objectives

- Establish and monitor experimental Alley Coppice plots in Europe
- Model their biophysical and economic behaviour
- Provide
 - information material,
 - management guidelines,
 - a tool for practitioners to estimate the profitability of an Alley Coppice system on a given field

Major achievements

Milestones:

- Established experimental plots in all involved countries
- Collected data from already existing and the newly established experimental plots
- Collected data (costs / workload) on establishment operations
- Economic and biophysical modelling

Output:

- Four master theses
- One bachelor thesis
- One (three) PhD thesis
- Five published papers, more to come

Selected Results

- Second harvest of SRC
- Modelling trees
- Results from the field trials in AgroCop countries
- Models / Tools
- AF at field edges

SRC: Harvest of the 2cnd Rotation (CREFF + AgroCop)

Field	Year	Work productivity [ha / h] RWT
Kraichtal 1	2011	0.7
	2013	0.8
Kraichtal 2	2011	1.1
	2013	1.1

- \rightarrow Second harvest comparable to first
- \rightarrow CREFF Tool applicable to 2nd harvest

Germany

Tree Models Derived from Terrestrial Laser Scan Data (Lin2Value + AgroCop)

Hackenberg J, Morhart C, Sheppard J, Spiecker H, Disney M. (2014). Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method Description. Forests, 5, 1069-1105.

Germany

SRC Biomass Distribution and Nutrient Content

Theoretical scenario: 3-year rotation / 30 odt ha⁻¹

Green: DBH 4cm, 11.143 trees ha⁻¹ Blue: DBH 10cm, 1.461 trees ha⁻¹

 \rightarrow Bark percentage of total biomass drops from 25% to19% (difference of 1.7 odt ha⁻¹)

Morhart C, Sheppard J, Spiecker H. (2013). Above Ground Leafless Woody Biomass and Nutrient Content within Different Compartments of a P. maximowicii× P. trichocarpa Poplar Clone. Forests, 4(2), 471-487.

France

Delayed planting of SRC in the Mediterranean zone

Hybrid Walnut (18 years), 100 trees/ha Poplar SRC, var. Monviso, 10.000 cuttings/ha

- SRC yield at 6m > 2m from timber tree line (p=0.00002)
- Higher yields on the north side of timber trees line (p=0.01)
- Very low growth increment

France

Silvoarable Agroforestry with pollards

- < competition for light and/or water?
- > biomass productivity of the intercrop?
- Biomass production from pollards

Walnut trees	non-pollarded	pollarded
Stem water potential	9.7 bar	7.1 bar
DBH increment	100%	47%
Intercrop (wheat)	non-pollarded	pollarded
Intercrop (wheat) PAR	non-pollarded	pollarded 91%

France

Biophysical Modelling: Example

3 rotation cycles of ~ 20 years Rotation period = 3 year

Distance between timber tree rows: 15m

- Timber volume: Moderate decline
- SRC yield: Strong decline

....but: depending on plant design etc.

Italy Economic Modelling: Example

• In "sharp" calculations, AC is usually less competitive than pure SRC - except for simultaneous planting under optimal conditions

Agroforestry at field edges

Proceeds from timber (1.4 m^3 and 400 \in / m^3)	560.00€
Proceeds from fire wood (4.4 $\rm m^3$ and 30 \in / $\rm m^3)$	132.00€
Total proceeds (timber + fire wood)	692.00 €
Total production costs	355.60 €
Net profit per tree	336.40 €

Nahm M, Morhart C, Spiecker H, Sauter UH (2015). Agroforst ganz am Rande: Böschungen und Feldraine für die Wertholzproduktion nutzen. Naturschutz- und Landschaftsplanung, submitted.

Italy

Alley Coppice Questionnaire, Italy

Results

- predominantly planted on plain land with good soil fertility
- weed control: most frequent management constraint
- all farmers satisfied with tree growth
- environmental benefits (biodiversity conservation, landscape, soil quality improvement) rated equally important as economic benefits
- main concern: Where / how to sell the biomass / the timber?

Ireland

- Experimental Sites
- In May 2013 three experimental sites were established, two in the North of Ireland at the Agri-Food and Biosciences Institute Research Station in Loughgall, Co. Armagh and one at Gurteen College Roscrea, Co. Tipperary, Ireland.

Exp. 1 Cherry interplanted with willow variables-row width vs willow variety

Mean ht of cherry –yr2

Effect of buffer width on tree ht.

PAR

Experiment 2 – Poplar – willow trial at AFBI, Loughgall, Co. Armagh, N. Ireland.

sdfasfsadsdaf

Poplar-Willow Alley Coppice System

Alley Coppice (AC) system with Poplar trees intercropped with Willow near the Agri-Food & Biosciences Institute (AFBI) research station, Loughgall, Co. Armagh.

Photo credit: Rory Lunny

sdfasfsadsdaf

sdfasfsadsdaf

Expt 3. Co Tipperary, Ireland

Experiment 3 (Gurteen)

Clonal Cherry Comparison.

Randomised single tree linear plots.

 Measure cherry growth, soil water, light and leaf nutrients.

-

Ъ.

Expt 3-cherry variety

Information, publications:

→ www.agrocop.com

GEFÖRDERT VOM

Thanks to:

www.woodwisdom.net w

www.eranetbioenergy.net